Al in Practice

Muhammad Ghifary, PhD Head of Artificial Intelligence

Bukalapak

- 1. What is AI?
- 2. AI/ML in Practice
- 3. Al in Bukalapak
- 4. Al Organizations and Skill Set

What is Al?

Artificial Intelligence (AI)

The creation of machines that mimic human intelligence

MACHINE INTELLIGENCE 3.0

shivonzilis.com/MACHINEINTELLIGENCE · Bloomberg BETA

TECHNOLOGY STACK -AGENT ENABLERS OCTANE.AI howdy. Maluub/ CALINA OpenAl Gym Kasisto OUTOMOT **semantic**machines DATA SCIENCE COMINO CONSTRUCTION SPARKBEYOND S rapidminer kaggle DataRobot §hat AYASDI data iku seldon ayseop bigm **MACHINE LEARNING** -CognitiveScale (GoogleML Context relevant Strong HyperScience AGA logics minds at H2O at SCALED C Sporkcognition C GEOMETRIC deepsense.io reactive 🔺 skymind 😤 bonsai NATURAL LANGUAGE □ agolo #HYLIEN LEXALYTICS Narrative / 📖 spaCy 🏠 LUMINOSO Science / 🔕 cortical.io 🔘 MonkeyLearn DEVELOPMENT SIGOPT HyperOpt fuzzy^{io} okite 🖉 rainforest 🔘 lobe 🔬 Anodot Signifai LAYER 6* 😤 bonsai DATA CAPTURE CrowdFlower & diffbot CrowdAl import Paxata DATASIFT amazon mechanical turk enigma WorkFusion DATALOGUE OTRIFACTA Oparsehub **OPEN SOURCE LIBRARIES** — Keras Chainer CNTK TensorFlow C H20 DEEPLEARNING4J theano "torch DSSTNE Scikit-learn MXNet DMTK Spork PaddlePaddle WEKA HARDWARE -KNUPATH 🜍 TENSTORRENT 🔊 Cirrascale (intervana Movidius 🔽 tensilica GoogleTPU 🖄 1026 Labs Cualcomm Cerebras Isosemi OpenAl Consistence ELEMENT" Vicarious

KNOCCIN ANUMENTA Kimera Systems Cogitor

Machine Learning programming intelligence into computers, through

learning from data.

ukalapal

Source: https://towardsdatascience.com/coding-deep-learning-for-beginners-types-of-machine-learning-b9e651e1ed9d

Supervised Learning Template

Two Phases

AI/ML in Practice

- 1. Set the research goal
- 2. Make a hypothesis
- 3. Collect the data
- 4. Build a model and test your hypothesis
- 5. Analyze your results
- 6. Reach a conclusion
- 7. Refine hypothesis and repeat

Deciding on ML

Define an ideal outcome

03 Set success / failure metrics

04 Design appropriate model outputs

05 Start with heuristics / rules

Occam's Razor

"When faced with two equally good hypotheses, always choose the simpler."

Image source: ClubStreetPost.com

Problem Definition

ML problem is best framed as:

- Binary classification
- Multi-class single-label classification
- Multi-class multi-label classification
- Uni-dimensional regression
- Multi-dimensional regression
- Clustering (unsupervised)
- Other (translation, parsing, bounding box, etc)

Source: https://developers.google.com/machine-learning/problem-framing/formulate

Biggest gain in ML is first launch

Source: https://developers.google.com/machine-learning/problem-framing/formulate

Dataset Construction

01 Collect the raw data

02 Identify feature and label sources

03 Select a sampling strategy

O4 Split the data

Data Transform

01 Normalization

02 Bucketing

03 Categories to numbers

Normalization

Normalization Technique	Formula	When to Use
Linear Scaling	$x' = (x - x_{min})/(x_{max} - x_{min})$	When the feature is more-or-less uniformly distributed across a fixed range.
Clipping	if x > max, then x' = max. if x < min, then x' = min	When the feature contains some extreme outliers.
Log Scaling	x' = log(x)	When the feature conforms to the power law.
Z-score	x' = (x - μ) / σ	When the feature distribution does not contain extreme outliers.

Categories to numbers

- Vocabulary
- Hashing

Model Training

Source: http://web.cs.ucla.edu/~shi.feng/Machine_Learning.html

Model Inference: ML in Production

[Sculley et al. NIPS 2015] "Hidden Technical Debt in Machine Learning Systems

DevOps vs MLOps

DevOps

- Continuous Integration (CI)
- Continuous Delivery (CD)

Asset: Code + Components

MLOps

Continuous Integration (CI)

- Continuous Delivery (CD)
- Continuous Training (CT)

Asset: DevOps + Data + Model

DevOps vs MLOps (2)

MLOps: Manual process

MLOps: Pipeline automation

Al in Bukalapak

One of the largest e-commerces in Southeast Asia

PBs of data!

Recommender System

Definition

Recommender System

A computerized systems that suggest goods and service by predicting user's preference and ratings.

Recommender systems in e-commerce identify a similarity in the preferences or tastes of one consumer and others (e.g. goods purchased, products viewed); and make recommendations for new purchases drawn from the set of other goods bought or viewed by each of the like-minded consumers.

Scope

Recommendation may be combined with Personalization

Service Recommendation

Used in

Recommendation on PDP, Cart, and Homepage

Providing relevant recommendation based on personalization, popular products, and sellers to users. Recommendation is in Product Detail Page, Cart, and Homepage **Total Impact** (since 2017)

>Rp200B per month

additional income for sellers

>45% of traffics to product detail

end up clicking our recommendation
>15% of traffics to product detail
is accounted from our recommendation

Source: <u>https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-1-knn-item-based-collaborative-filtering-637969614ea</u>

The number of items

FACTORIZATION

Classical approach in collaborative filtering

The task is to complete the matrix and predict the user

Represent the large user item matrix into multiplication of two

low-rank matrices (e.g. **Singular Value Decomposition**) :

- User Factors (**k-size vector** for each user) 0
- Item Factors (**k-size vector** for each item) 0

Collaborative **Filtering**

millions of items!

Matrix Factorization (challenges)

Data sparsity becomes an **issue**

Too many **zeros** in the matrix

Similar products sold from different seller ⇒ Does it **translate** to different user preference?

Rekomendasi Buat Kamu

and forth between pages

 $\overline{\triangleleft}$

1 2 3

u

m-1

(R

R

R

R

User click indicates someOkay, I'level of interest. Clicks arebuyingabundant. But noisy!questio

E-commerce Data (User Feedback)

I definitely like it. I have paid for the product!

Okay, I'm interested in buying this stuff! The big question is does the user eventually buy it?

I love this item!

Brovman, et al. 2016. Optimizing Similar Item Recommendations in a Semi-structured Marketplace to Maximize Conversion. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys '16).

c

Bukalapak		

 $\overline{\triangleleft}$

Enhance re-ranking through Learning-to-Rank

Comparison Features

I. Title Similarity

- 2. Price Ratio
- 3. Category
- 4. etc.

Item **Quality** Features

- 1. Product Rating
- 2. Seller Feedbacks
- 3. Revenue
- 4. etc.

Classification Result

We use Logistic Regression, Random Forest, XGB. However, *LogReg* came up with the best *performance*.

Metrics	Baseline	LTR
MAP	28.43%	31.35%

Notes :

- A/B test shows *positive* result for *paid* and *atc* conversion.
- 2. Rank aware metrics are *correlated* with the *online testing*.

DETAIL Online evalu	uation : AB Testing					
		∕ edit	× close	C reset	© reset	i delete
open time status 25/06/2019 15:54:43 open	formatted	± csv		data	кеер	
table comparison metri	cs funnel					
		normal	I	_tr 1	Li	r 2
weight						
participant						
	participant					
	value					
	conversion_rate					
	relative_conversion_rate					
add_to_cart_from_reco	difference_value					
	difference_rate					
	p_winning					
	chi_square_confidence					

Sampled 50% users

Deployment

Search Engine Architecture

Source: https://www.slideshare.net/Zhiguang/intro-to-elasticsearch-63475620

Query to Category Mapping

Useful for search result filtering by category

Kategori Bara	ang	>
in bukamali		
Tampilkan Bara	ng dari Lapak Resmi	
Rentang Harg	a	
Minimal	- Maksin	nal
Diskon		
Cicilan		
Grosir		
Garansi a Tampilkan kembali 10	man barang pilihan bergaransi uang 10% dari Bukalapak	g

←	Pilih Kategori	(
Kate	r ori Terkait	-
6	Makanan Food	1
0	Bumbu Instan Food > Bumbu	
0	Tempat Penyimpanan & Organizer Rumah Tangga	
Kate	gori Lainnya	
Food	d	
	ah Tangga	
Rum		
Elek	tronik	
Elek Perle	tronik engkapan Bayi	
Elek Perle Kese	tronik engkapan Bayi ehatan	
Elek Perle Kese	tronik engkapan Bayi ehatan	

Bukalapak

Query Typo Corrections

Bi-gram Language Model

- Frequency count-based: easy to implement and productionize
- Fast inference

 $P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-1})$

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Source: https://web.stanford.edu/~jurafsky/slp3/3.pdf

Investment Advisory

Predict the user's risk profile of from the meta-data / attributes before filling the questionnaire

Source: <u>https://analyticsindiamag.com/a-step-by-step-to-creating-credit-scoring-model-from-scratch/</u>

ReksaDana Portfolio Selection

Provide ReksaDana packages that maximize return and minimize risk according to the user's risk profile.

← BukaReksa

Beli paketan buat investasi di banyak produk

Anti lupa investasi pakai Transaksi Rutin

← Paket Pemberani

Rp54.000

Rp180.000

Bukalapak

Forbidden Product Filtering

Forbidden Product Filtering

Usages:

- Automatic filtering of products before being ingested by Ad Campaign
- Help Ops team to take down the products from marketplace

Handling Sexy Contents

- Deep learning-based feature extraction
- Transfer learning from Yahoo Open NSFW model -- source data are not available
- Human labelling for training is super important

Seems good, right? But ...

Not exactly what we wanted

Seeing only the numbers, it seems to be worse. But, ...

Though it's not perfect, this is closer to what we wanted \bigcirc

Al Organizations & Skill Set

The materials are mostly taken from https://workera.ai/candidates/report

AI Organizations

Data Science

To make scientific decisions, help businesses run more effectively

Machine Learning

To automate tasks, decrease operational costs, scale a product

Data Engineering

Provide the necessary data to achieve the modeling or business analysis task.

Modeling

Prototyping models to exploit patterns found in data to predict outcomes, identify business risks and opportunities.

Deployment

All activities that make a model available for use, requiring the ability to write production code.

Business Analysis

Analytics, business activities related to communicating with clients and colleagues, thought leadership, and marketing.

Al Project Development Task Lifecycle

6 Roles of an Al Team

Data Scientist

SKILL PROFILE

TASKS

Bukalapak

Data Analyst

SKILL PROFILE

TASKS

Machine Learning Engineer

SKILL PROFILE

TASKS

TASKS

Thank you

AI Applications in Industry

Muhammad Ghifary, PhD

Head of Artificial Intelligence

muhammad.ghifary@bukalapak.com

